Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasitol Res ; 123(2): 137, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376760

RESUMO

Pangolins are susceptible to a variety of gastrointestinal nematodes due to their burrowing lifestyle and feeding habits, and few parasitic nematodes have been reported. Here, a Chinese pangolin with old wounds on its leg and tail was rescued from the Heyuan City, Guangdong Province. The cox1 and SSU rRNA of the worms from the intestine of the Chinese pangolin had the highest sequence identity of 89.58% and 97.95% to the species in the infraorder Spiruromorpha. The complete mitogenome of the worm was further assembled by next-generation sequencing, with a size of 13,708 bp and a GC content of 25.6%. The worm mitogenome had the highest sequence identity of 78.56% to that of Spirocerca lupi, sharing the same gene arrangement with S. lupi and some species in other families under Spiruromorpha. However, the mitogenome between the worm and S. lupi showed differences in codon usage of PCGs, sequences of NCR, and tRNA secondary structures. Phylogenetic analysis showed that the worm mitogenome was clustered with S. lupi in the family Thelaziidae to form a separate branch. However, it is still difficult to identify the worm in the family Thelaziidae because the species in the family Thelaziidae are confused, specifically S. lupi and Thelazia callipaeda in the family Thelaziidae were separated and grouped with species from other families. Thus, the parasitic nematode from the Chinese pangolin may be a novel species in Spiruromorpha and closely related to S. lupi. This study enriches the data on gastrointestinal nematodes in the Chinese pangolin.


Assuntos
Genoma Mitocondrial , Espirurídios , Thelazioidea , Humanos , Animais , Pangolins , Filogenia , Sequenciamento de Nucleotídeos em Larga Escala
2.
Parasit Vectors ; 17(1): 94, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419103

RESUMO

BACKGROUND: Gastrointestinal tract (GIT) nematodes prefer to live in the intestines of wild animals, causing damage and even death, and posing a zoonotic risk. The polyparasitism of GIT nematodes results in the complex dynamics of the nematode communities that occur naturally in wild animals. However, the nematode community in captive wild animals is poorly understood. METHODS: We combined  microscopic examination and amplicon sequencing for community diversity. RESULTS: We characterized GIT nematode assemblages to one order, one family, four genera, and ten species, in 512 fecal samples of 121 species from captive wild animals in southern China. The positive rate of GIT nematodes was 20.7% (106/512), including 42.3% (11/26) in reptiles, 26.5% (39/147) in herbivores, 25.0% (25/100) in non-human primates, 20.0% (5/25) in omnivores, 12.2% (9/74) in carnivores, and 12.1% (17/140) in avians. The dominant nematodes were Haemonchus contortus in herbivores and Trichuris species in primates. The nematode communities of arboreal primates differed from their terrestrial counterparts, reflecting both host phylogeny and ecological constraints. Soil-transmitted Strongyloides species were widespread throughout the herbivore, primate, avian, and carnivore communities, and tended to infect omnivorous primates and terrestrial herbivores. In addition, new Trichuris and Heterakis species were found in the nematode communities of captive porcupines and peafowls. CONCLUSION: This study highlights the variation in the composition of the GIT nematode community and strengthens the attention to the harms induced by zoonotic nematodes and co-infective nematodes with low species richness.


Assuntos
Animais Selvagens , Nematoides , Animais , Solo , Trichuris , Primatas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...